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Asymptotic results for the free decay of shape oscillations of viscous liquid spheres 
have been extended to include higher-order terms in the ratios of the inner and outer 
viscous penetration lengths to the radius. The new expressions are shown to be 
important for studies in which the two fluids have dissimilar densities and viscosities 
such as air/liquid systems. The analysis also includes an expansion for the frequency 
of maximum response of driven oscillations. The calculations are supported by 
measurements of the small-amplitude quadrupole mode free decay of nearly spherical 
bubbles acoustically levitated in clean water. The bubble radii ranged from 400 pm to 
1400 pm. The results are interpreted in light of the initial-value problem. The lack of 
excess damping suggests that the interface behaves ideally for times up to two hours 
after bubble injection. Measurements were also carried out on bubbles in 0.5 M NaCl 
solution and in sea water. Larger bubbles (radius> 800 pm) in clean water exhibit 
damping two to four times larger than predicted by theory. The transition from this 
anomalous damping to theoretical damping is a very abrupt function of radius. All 
observations were carried out with similar acoustic fields for counteracting buoyancy. 
The excess damping appears to be associated with some nonlinear response of the 
bubble. 

1. Introduction 
The study of the dynamics of fluid drops and air bubbles suspended in a host 

medium is important for a wide variety of applications. The behaviour of air bubbles 
and liquid drops is important for materials processing applications (purification of 
liquids, bubbly flows, chemical reactions, etc.) especially in low-gravity environments. 
The behaviour of sea bubbles is known to have important effects on climate and health 
(Horne 1969; Monahan & Van Patten 1989). Small bubbles are important in the study 
of cavitation phenomena and sonoluminescence (Young 1989 ; Crum 1994). Nonlinear 
coupling of shape and volume modes has been of considerable interest (Longuet- 
Higgins 1992; Yang, Feng & Leal 1993). Acoustic levitation has been found to be an 
effective method for trapping and positioning the samples for study. It is also possible 
to induce shape oscillations of samples through amplitude modulation of the acoustic 
radiation pressure (Marston & Apfel 1979; Trinh, Zwern & Wang 1982). In this way, 
forced or freely decaying oscillations can be conveniently studied in a variety of 
situations. For example, this method has been used to measure interfacial properties 
(Marston & Apfel 1980; Hsu & Apfel 1985; Trinh, Marston & Robey 1988; Lu & 
Apfel 1990). The levitation and shape oscillation of millimetre size bubbles has also 
been demonstrated (Asaki, Marston & Trinh 1993). 

The emphasis of this paper is on the free decay of shape oscillations of bubbles. An 
extension of previous theoretical models (Miller & Scriven 1968 ; Marston 1980; 
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Prosperetti 1980a) is derived which more accurately describes the dynamics of gas 
bubbles in a liquid and the dynamics of liquid drops in air. In addition to solutions of 
the characteristic equation, experimental work is presented in support of the new 
calculations ; namely, measurements of the free decay of small-amplitude quadrupole 
shape oscillations of bubbles in clean water. A difficulty with these experiments is that 
trapping of the sample against its buoyancy induces a static oblate shape. For 
sufficiently small bubbles trapped in water, however, the equilibrium shapes can have 
aspect ratios very near unity (Asaki & Marston 1995). The effects of the weak static 
background distortion of the bubble (typically 1 % of the radius) are approximated by 
linear superposition of the distortion on the small-amplitude oscillations about a 
spherical shape (Marston 1980). 

The characteristic equation for the decay of shape oscillations is found by 
linearization of the Navier-Stokes equation and requires that the amplitude of 
distortions is small compared to the bubble or drop size (Miller & Scriven 1968 ; Marston 
1980; Prosperetti 1980b). The fluids are assumed to have Newtonian behaviour and the 
interfacial region is considered to be ideal (no interfacial viscosity or elasticity). 
Dissipation of energy arises from normal viscous dissipation away from the interface 
as well as in an oscillating viscous boundary layer. The form of the characteristic 
equation is sufficiently complicated that it may be solved with asymptotic expansions 
or numerically. Asymptotic approximations given previously reveal viscous corrections 
to Lamb’s (1932) inviscid expression (Miller & Scriven 1968 ; Marston 1980; Prosperetti 
1980a; Hsu & Apfel 1987; Lu & Apfel 1990). The expansions, extended in the present 
analysis, illustrate the significance of the damping mechanisms. The resulting linear 
damping rates may give insight into the importance of nonlinear mode coupling rates 
approximated for bubbles in inviscid fluids (Longuet-Higgins 1992; Yang et al. 1993). 

This paper is organized as follows. The theoretical analysis extends the previous 
asymptotic solution for the free decay of shape oscillations. Comparison with 
numerical solutions in representative cases shows that new terms in the analytical 
approximation are especially significant in the case of shape oscillations of gas bubbles 
in liquids and, to a lesser extent, drops of liquid in a gas. The experimental set-up and 
procedures are described, including the preparation of materials and the data 
reduction procedures. Experimental results are presented for the free decay of 
quadrupole oscillations of air bubbles in pure water and in 0.5 M NaCl solution. The 
results are discussed in light of the extended calculations. Results are shown for a 
bubble in sea water which exhibits excess damping. Various expansions and parameters 
used in the approximate results are outlined in Appendix A. The maximum response 
frequency for the case of acoustically forced oscillations is expanded in Appendix B. 
That analysis is germane to the initial conditions used in the measurement of the free 
decay. 

2. Theory 
This section examines the extended approximation for the free decay of shape 

oscillations of drops or bubbles about a spherical shape. The extended approximation 
is found to more accurately describe situations in which the host medium and sample 
have very different densities and viscosities. The new expressions are compared in turn 
with numerical solutions and the applicability of each is discussed. This section finishes 
with a discussion of the initial-value problem and the implications for conducting free- 
decay measurements. 
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2.1. Complex free-decay frequency 
It is appropriate to review the evolution of the shape for the linearized description of 
freely decaying normal modes of a spherical drop or bubble. For the purpose of this 
discussion it is sufficient to restrict attention to axisymmetric modes such that the 
instantaneous surface is given by 

(1) R(8, t )  = 8, 1 + C Re [x, exp (iQ, t)] P,(cos 8) , 

where P, is a Legendre polynomial of the indicated argument, 8 is the polar angle, x, 
is the complex modal amplitude, and is the equilibrium radius of the bubble or drop. 
The complex frequency 0, describes the period and decay rate of the nth mode. It is 
convenient to suppress the mode index n except when needed for clarity. Under the 
restriction of incompressible potential flow, the characteristic equation is found by 
applying standard boundary conditions to the linearized Navier-Stokes equation. The 
result can be represented as a determinant (Marston 1980): 

1 m 

{ n=2 

- isZ 1 0 0 0 

0 1 0 - 1  0 

0 - ( n - I )  zi 9; - (n+2) 2n+ 1 -z,,st 
= 0. 

(2) 

This expression is equivalent to those of Miller & Scriven (1968) and Prosperetti 
(1980a). Here w is the frequency for the inviscid case (Lamb 1932): 

1 
27t 

crn(n + 1 )  (n - 1) (n + 2) 
R 3 r  

w = -( (3) 

where T = np, + (n  + 1) pi, cr is the interfacial tension, ,LA, and pi are the outer and inner 
fluid viscosities respectively, and p, and pi are the outer and inner fluid densities 
respectively. The symbols 9: and 2; are defined as ratios of spherical Bessel functions 
and spherical Hankel functions of the first kind respectively: 

where 

Equation (2) can be simplified by considering the leading-order viscous corrections in 
the limit I z , ~ ,  lzil 9 1. The resulting characteristic equation is 

(6) 

The particulars of the asymptotic expansions and the fluid-property dependent 
parameters a, y and K are discussed in Appendix A. The parameter 6 has not been 
explicitly determined except to note the complex nature of the term in equation (6) .  

w2-Q2+i(l + i ) ~ r Q ~ / ~ + i y n - - ( l  +i)KQ'/2+i(l +i)S+ ... = 0. 
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Sample radius 0.3 mm 1.0 mm 3.0 mm 
Water drop in air 

Equation (9) 4620+52.701 759.3+4.8381 146.1 +O.SSOi 
Equation (8) 4618+50.85i 759.2+4.715i 146.1 +0.540i 
Equation (2) 4618+50.81i 759.1 +4.713i 146.1 +0.540i 

Equation (9) 2562+ 155.7i 427.1 + 18.421 82.99+2.639i 
Equation (8) 2562+ 155.81 427.1 + 18.431 82.99+2.639i 
Equation (2) 2563+ 157.21 427.2+ 18.521 83.00+2.6471 

Equation (9) 5651 +200.7i 929.2+ 18.221 178.9+2.046i 
Equation (8) 5637+ 183.31 928.2+ 17.06i 178.8+ 1.9481 
Equation (2) 5638+ 183.5i 928.2+ 17.07i 178.8+ 1.949i 
Equation (B 1) 5635 928.0 178.8 
Equation (B 3 )  5630 927.8 178.8 

p-Xylene drop in water 

Air bubble in water 

TABLE 1. Calculated complex free decay 52 (rad s-l) for quadrupole shape oscillations of a spherical 
sample. Representative cases are considered for three different systems : a water drop in air; a p-xylene 
drop in water; and an air bubble in water, For each case three different sample radii are considered 
and the response is calculated by three methods described in the text. In addition, the frequency of 
maximum response for driven oscillations is shown for an air bubble in water as calculated 
numerically (B l), and approximated by (B 3). 

This form of the characteristic equation was given by Marston (1980) up to and 
including the y dependent term. It is noteworthy that equation ( 6 )  (and thus all of the 
results that follow) can be obtained from Marston's expression by the substitution 
a --f a + iK/D + S/D312. Equation (6) was solved using Newton's method of iteration 
with the initial value D = w. The result is 

The real part of R is the free-decay frequency. The imaginary part of D is the decay 
constant (reciprocal of the decay time constant). Terms involving aw1I2 have the form 
of viscous shear layer dissipation near the interface. The parameter y is descriptive of 
damping directly proportional to the generalized velocity of the nth mode. The relative 
importance of each term will depend upon the system under investigation. While some 
of the terms will always be small, they have been included here for completeness. We 
find that, for a wide variety of systems, 0 is approximated well by 

a2 y 3ay 
2 8 d 2  20'~' 8w 2 2 8 d i Z  

This expression retains only the leading-order a, y and K corrections. With the further 
omission of the K terms, Marston's (1980) expression is recovered: 

u d / 2  3ay 

where a transcription error in the ayw-li2 term of the previous work is corrected. 
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Fluid Property 

Air P 

Water P 
LL 

P 

(relative to air) 

rLL 

(relative to water) 

U 

p-Xylene P 

0. 

Value 
0.001 075 g ~ m - ~  
0.000 184 g s-' cm-' 
0.9970 g ~ m - ~  
0.008905 g s-l cm-' 

71.97 dyn cm-* 

0.857 g cm-3 
0.006 14 g s-' cm-' 

37.5 dyn cm-l 

TABLE 2. Physical properties of fluids at 25 "C where p is the density, ,u is the viscosity, and CT is the 
interfacial tension. The elevation of the laboratory is 780 m and the local acceleration due to gravity 
is 981 cm s-l. 

The applicability of the various approximations in this section are examined with 
respect to three specific cases: a water drop in air; a drop of p-xylene in water; and an 
air bubble in water. These examples are representative of a wide variety of fluid-fluid 
systems. In each case the complex free decay has been calculated by three methods: the 
former result of Marston, equation (9); the newly proposed approximate solution, 
equation (8); and the numerical solution of equation (2). The results are shown in table 
1 and the physical parameters used in the calculations are given in table 2. The 
important results are: 

(i) In all cases the complex frequency obtained through equation (8) closely 
approximates the numerical result. Larger deviations are associated with smaller 
sample sizes. 

(ii) For dissimilar fluids, such as water drops in air and air bubbles in water, the 
leading order K term in (8) represents a significant adjustment to the damping constant 
as given by (9). Deviations of several per cent are evident for small bubbles in water. 
Somewhat smaller corrections are present for the case of water drops in air. 

(iii) For dissimilar fluids the leading-order K term represents a minor adjustment to 
the free-decay frequency. The largest differences are associated with small air bubbles 
in water. 

(iv) For fluids of similar densities and viscosities, such as p-xylene and water, the 
leading order K terms are not significant. The numerical results for the frequency and 
damping constant are accurately predicted by both equations (8) and (9). Small 
discrepancies are present in the decay constant and appear to grow with decreasing 
sample size. 

2.2. The initial-value problem 
The response of an initially deformed sample in a fluid is an initial-value problem 
(Prosperetti 1980a, b) ; the decay towards spherical equilibrium depends upon the 
initial bulk fluid flow field as well as the sample's initial shape. The free decay is not 
necessarily fully described by equation (1) with a time independent 52, as has been 
assumed in the previous analyses. For example, a sample which is deformed in a static 
fluid will undergo an initially aperiodic decay which approaches periodicity only as the 
flow field becomes sufficiently developed. However, a sample which is initially driven 
at the free-decay frequency will exhibit periodic decay when the driving mechanism is 
removed. In this case, the flow fields are in a dynamic initial state which closely 
resembles the fully developed free-decay flow fields. From an experimental standpoint, 
this initial condition may at first appear impractical. The simplest procedure is to drive 
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oscillations at the easily observable frequency of maximum response wmaX (expressions 
are presented in Appendix B). Confidence in this approach is based upon how well 
urnax approximates Re(S2). For the case of bubbles in clean water this approximation 
is extremely good (see table 1). Thus, it is expected that a purely periodic decay will be 
evident for bubbles initially driven at the frequency of maximum response. 

3. Experimental description 
This section begins with a description of the acoustic levitation system and the basic 

operating considerations. The acoustic field is considered with respect to the tuning of 
the levitator and coupling into the bubble shape modes. The data collection methods 
are then described including bubble size and shape determination through a CCD 
camera image and bubble response detection techniques. Included in this section are 
materials preparation and data reduction procedures. 

3.1. Levitation system 
The acoustic levitation apparatus (figure 1) is very similar to those used in previous 
studies of levitated liquid and air samples (Asaki et al. 1993; Trinh et al. 1982). The 
construction materials were chosen, as far as possible, to minimize host liquid and 
sample contamination. The support structure is rectangular with a height of 15.9 cm 
and a square cross-section of side 10.2 cm. The upper portion is a water chamber 
constructed from 0.64 cm thick Plexiglas walls. The chamber is open at the top for easy 
access and water level adjustment. Typical water column height is 7.0 cm (volume is 
approximately 600 ml). The base is a Plexiglas block 8.25 cm tall from which a 
cylindrical bore 7.94 cm in diameter has been removed. The various pieces are bonded 
with a Plexiglas solvent. The base houses a hollow cylindrical piezoelectric transducer 
(0.64cm thick, 7.62 cm o.d., 7.62 cm tall) held in place by a Viton O-ring at its 
midplane. The upper end of the transducer is capped by a 0.32 cm thick circular glass 
plate which provides the acoustic source. An aluminium ring is bonded to the glass 
plate in order to modify the resulting acoustic field providing improved lateral stability 
for levitated bubbles (Asaki et al. 1993). The host liquid contained by this apparatus 
comes into contact with the Plexiglas walls and base, the glass plate, the aluminium 
ring with epoxy, the upper half of the coated piezoelectric transducer, the O-ring, and 
the open air. The fully assembled levitator was cleaned with household dish soap and 
rinsed repeatedly with purified water. Plexiglas is thought to be only a weak source of 
contamination of the surface quality of water (Scott 1978). 

3.2. Acoustics 

The ultrasonic field used for levitation and bubble shape mode excitation is produced 
by driving the piezoelectric transducer near its fluid-loaded resonance of 22.8 kHz. 
Applied voltages are typically 4 V r.m.s. The transducer, while excited in a radial mode, 
provides vertical motion to the glass plate through Poisson coupling. The sound field 
near the axis of the levitator approximates a one-dimensional plane standing wave of 
one wavelength in the vertical direction (Asaki & Marston 1995). All of the water 
chamber boundaries closely approximate pressure release surfaces. The nature of the 
field away from the axis, though complicated, does not appear to introduce spurious 
acoustic radiation force effects (Asaki & Marston 1994). The axial pressure is a 
sinusoidal function consisting of a centrally located pressure nodal region and two 
regions of high pressure. The typical acoustic pressure amplitudes are 0.5 to 1.5 atm. 

The levitator resonance (22.8 kHz) corresponds to the monopole resonance 
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Levitated bubble 

FIGURE 1. Schematic of the levitation apparatus showing the approximate location of a levitated air 
bubble. Construction details and acoustic features are discussed by Asaki et al. (1993) and Asaki & 
Marston (1994). 

frequency of an air bubble of radius 140 pm. Bubbles of larger radius will be levitated 
near to and above pressure nodal regions while bubbles of smaller radius will be 
levitated near to and above pressure antinodal regions (Asaki et al. 1993). The bubbles 
observed in this study were trapped above the axial pressure node roughly in the centre 
of the water chamber. The radiation pressure which provides the levitation capability 
also distorts the bubble into an oblate shape. Nearly spherical bubbles are expected to 
have a primarily quadrupole distortion. Bubble stability in slightly degassed water was 
good both laterally and vertically. No difficulties were encountered either during the 
taking of pictures or during observation of shape mode decay. Some lateral bubble 
motion is discernible in real time CCD image observation. These motions are of the 
order of 1 Hz and should not affect data collection or analysis. 

Shape mode oscillations are induced by the method of amplitude modulation of the 
radiation pressure. The voltage applied to the transducer, V, can be represented as 

(10) 

where V,  is the signal amplitude, f ,  is the frequency of levitation ( M 22.8 kHz), f ,  is 
the frequency of amplitude modulation, and E is the degree of modulation (1OOc is the 
modulation percentage). Observations show that no modulation threshold is required 
for inducing shape oscillations in agreement with similar studies for drops (Marston & 
Apfel 1980). 

3.3. Materials preparation 
Water used as the host liquid was processed in several stages. Local tap water was first 
de-ionized (resistivity M 2 MO cm) and then fed into a Gilmont vertical distillation 
apparatus. The product (60 + "C) was collected at a rate of one litre per hour directly 
into clean Teflon bottles. Full bottles were sealed with a Teflon cap and allowed to cool 
to room temperature. Cooling without atmospheric contact guarantees that the end 
product is somewhat degassed; solubility of nitrogen and other atmospheric gases is 
lowered at high temperatures. This degree of degassing has been found to be sufficient 
for inhibiting cavitation noise at the pressure amplitudes involved in levitating 
millimetre size bubbles. Bottles were kept sealed until the time of an experiment. 

Molecular biology grade sodium chloride was obtained and further purified by 
melting in ceramic crucibles in a high temperature oven at 960 "C. The salt was kept 

Y = y,[ 1 + €COS (2?rfM t)] [cos ( 2 4  t)], 



156 T. J. Asaki and P. L. Marston 

molten for over three hours and then allowed to cool over a few hours to room 
temperature. After the salt was removed 59 g was weighed and placed in an empty two 
litre Teflon bottle. Water was collected hot directly into the bottle from the distillation 
apparatus and sealed when full. The water was then allowed to come to room 
temperature. In this way 0.5 M NaCl solution was produced which was somewhat 
degassed. 

3.4. Bubble imaging and sizing 
A CCD camera was employed for determining the size and shape of levitated bubbles. 
The images had a typical resolution of 20 pm/pixel dependent upon the extension of 
a bellows used for magnification. Exposure times of 15 ms were typical. The available 
CCD array measured 165 x 192 pixels. High contrast bubble images were obtained by 
diffuse source backlighting. 

The static size and shape of each bubble were found in the absence of modulation 
by the following method. The bubble image was passed through a modified-gradient 
edge-finding routine which locates a discrete point profile of the bubble. These points 
were then fitted to a Legendre polynomial function: 

m 

r(8) = R, + C R, Pn(cos 8),  
n=2 

where r is the local bubble radius, 8 is the polar angle, P, is the Legendre polynomial 
of order n, R,  is the coefficient of P,, and m is the maximum order used in the fitting 
procedure. It was found that m = 2 provided excellent profile fits; the bubbles were 
shown to have a primarily quadrupole distortion. Calibration checks by imaging 
stainless steel ball bearings demonstrate accuracy of the horizontal and vertical radii 
determination to within 0.5 %. Uncertainties in bubble aspect ratio determination vary 
accordingly. 

3.5. Free-decay detection system 

The free decay was recorded by measuring the extinction of light caused by a bubble 
placed in the path of an expanded laser beam (figure 2). The technique is known as the 
pseudo-extinction method (Trinh et al. 1988; Lu & Apfel 1990; Stroud & Marston 
1993, 1994). The expanded laser beam was aligned to pass vertically along the axis of 
the levitator. A focusing lens collected the light through an aperture onto a 
photodetector. For a vertical beam of light the cross-section of a bubble undergoing 
small-amplitude axisymmetric quadrupole shape oscillations is a circle whose radius 
varies sinusoidally about its equilibrium as illustrated in figure 2. The light power 
reaching the photodetector is reduced as the bubble cross-section becomes larger. For 
bubbles much larger than the wavelength of light the effective scattering cross-section 
is approximately 2nR2 (twice the cross-sectional area of the bubble). The scattered 
power is roughly equally divided into : (i) a forward diffraction contribution ; and (ii) 
externally reflected and internally reflected and refracted contributions. The aperture 
was present to transmit the full forward-scattering diffraction peak while at the same 
time blocking the larger angle reflected and refracted contributions from reaching the 
photodetector. This approach allowed for ease of alignment and was insensitive to 
lateral bubble motion. The aperture size h was such that h % hf /R  where h is the 
wavelength of light (638 nm) and f the lens focal length (1 1 cm). The photodetector 
output for driven or decaying oscillations consisted of a small sinusoidal variation 
superimposed on a relatively large d.c. signal (total power minus (ii) contribution). 
This signal was amplified and sent through a high-pass filter. The result was recorded 
on a digital oscilloscope. The signal levels were more than sufficient for extracting the 
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Photodetector 

Pinhole 

Lens 

Bubble ~ 

Levitator 

Transducer - 

High-pass Digital Preamp filter oscilloscope 

3 m p 1 i fi e r generator 

Side view Top view 

FIGURE 2 .  Experimental set-up. A levitated bubble is driven into small-amplitude shape oscillations 
by means of modulated acoustic radiation pressure. The free decay of the oscillations, subsequent to 
termination of the modulation, is recorded on a digital oscilloscope by means of the pseudo- 
extinction method (see text). 

decay properties over the entire range of bubble sizes studied. It was necessary to use 
a low-noise laser according to the advice of Stroud & Marston (1993). 

Data collected in this way was fitted to a pure exponential decay of a sinusoid with 
five free parameters : 

(12) 
where u( t )  is the filtered output voltage of the photodetector, Av is an allowed small 
d.c. offset, v0 is an amplitude, w is the free-decay frequency, 4 is an initial phase, and 
7 is the decay time (inverse of the damping constant). The fitting procedure initially 
includes all data points in the time window -0.37' < t < 37' where 7' is an initial 
approximation based upon the raw data. The selected data is then fitted to equation 
(12) by a least-squares method in which the difference function minimum is reached by 
a linearized gradient approach. Next, a new data range is selected based upon the fit 
parameter 7, and the fitting procedure is repeated. The second fit yields the 
experimental values for the free-decay frequency w and the free-decay damping 
constant 1 / ~ .  Figure 3 shows a sample data trace and the final fit to a subset of the data. 

u(t)  = Av + yo cos (wt+ 4) exp (- t /7 ) ,  
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1 
- 10 0 10 20 30 40 50 60 70 

Time (ms) 
FIGURE 3. Sample data trace of the free decay of quadrupole oscillations for a bubble in clean water. 
The oscillations are driven by modulation of the acoustic radiation pressure up until the zero time. 
The open circles are the data and the solid line is a exponentially decaying sinusoid fitted to a subset 
of the data. The quality of the data and fit is in part due to the use of a intensity stabilized HeNe laser. 
In this example w / 2 x  = 292.3 Hz, T = 22.02 ms, R = 608.9 pm, and A = 1.006. 

4. Experimental procedure 
An experiment involves the observation of a single levitated bubble over the course 

of several minutes or even up to a few hours. The procedure is as follows: 
(i) Prepare the host solution 12 to 24 hours prior to the beginning of the experiment. 

This allows temperature equilibration between fluid, room and levitator. 
(ii) Clean the glassware and thoroughly rinse the levitator with clean water just prior 

to beginning. 
(iii) Fill the levitator with the host fluid to a depth of 7.0 cm. Adjust levitator drive 

amplitude (without modulation) to 3.5 or 4.0V r.m.s which is just sufficient for 
levitating bubbles of R, M 1.5 mm. 

(iv) Inject a test bubble by means of a glass microlitre pipette. Tune the levitator by 
adjusting the frequency of levitation so that the bubble is trapped at its lowest position. 
With the bubble in place, check the alignment of the optics. The bubble should be near 
to the centre of the laser beam. Remove the test bubble. 

(v) Select the desired modulation percentage, 100e, such that the amplitude of shape 
oscillations is always small relative to the bubble size. Measurements of the amplitude 
can be made by the method described by Stroud & Marston (1993). 

(vi) Inject a bubble with the modulation off. Set experiment timer t ,  = 0. 
(vii) Turn the amplitude modulation on. Adjust the modulation frequency so that 

the photodiode signal is maximized. The bubble is now being driven at its frequency 
of maximum response. 

(viii) Switch off the modulation. The digital scope records the free decay of the 
oscillations. 

(ix) Backlight the bubble and record the now static image. This step immediately 
follows step (viii). Record the experiment elapsed time t, and the host fluid temperature. 
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(x) Repeat steps (vii) through (ix). 
The length of an experiment depends upon the water's dissolved gas content. 

Solutions which are relatively near saturation dissolve bubbles more slowly than 
solutions which are in a largely gas-depleted state. The experiment is terminated when 
the gradually dissolving bubble shifts abruptly to a different levitation position. The 
host liquid may also become sufficiently regassed that the experiment is effectively 
ended by cavitation noise. 

5 .  Results 
Four representative experiments, each involving a single levitated air bubble, will be 

discussed. The first two experiments were carried out in purified water. The third 
experiment was carried out in a 0.5 M purified NaCl solution. A fourth experiment was 
carried out in a sea-water sample. All experiments were conducted at room temperature 
and an atmospheric pressure near 700 mmHg. This value of the pressure (0.92 atm.) is 
reduced from standard pressure owing to the elevation of the laboratory. Oscillation 
amplitudes have been measured for a few representative bubbles and have been found 
to be less than 10 O/O of bubble radius in all cases. These small amplitudes are induced 
with acoustic pressure modulations of 10-40 YO (0.1 < E < 0.4). The data are presented 
in figures 4-8. The time evolution of the bubble properties are shown from the time of 
bubble injection up to the time the experiment is terminated. The equilibrium bubble 
shape is given by the aspect ratio A defined as: 

r(O = fn) 
A =  

r(0 = 0)  ' 

from (1 1) with m = 2. The radiation pressure distribution on the bubble is such that 
its static shape is slightly oblate. For the purpose of theoretical analysis, the bubble size 
is given by the volume equivalent radius R which is the radius of a sphere of the same 
volume as the bubble: 

R = [ r3(0) sin (0) d 0 r 3 .  

This characterization is equivalent to the approximation that the effects of static 
background distortion and of small-amplitude oscillations about a spherical shape can 
be added by linear superposition (Marston 1980). The free decay frequency of 
quadrupole shape oscillations is described by the dimensionless quantity F which is 
defined as the ratio of the experimental to theoretical frequencies: 

w 
F S -  

Re ($2)' 

The free-decay damping constant is described by the dimensionless quantity S which 
is defined as the ratio of the experimental to theoretical damping constants: 

S = -  1/7 
Im (Q)' 

The free-decay frequency and damping in (1 5 )  and (16) have been determined 
numerically from (2). The parameter values used in the calculations are given in 
table 3. 
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5.1. Case 1 .  Air bubble in clean water 

The results of this first example are shown in figure 4. The study was conducted over 
the course of two hours. The bubble radius decreased from a value of 707 pm to about 
420 pm. The dissolution of the bubble shows a remarkably linear decrease in the radius 
with time. This behaviour is in agreement with previous findings for large acoustically 
levitated bubbles (Asaki et al. 1993), but is fundamentally different than the predicted 
and observed dissolution of small clean bubbles which show a linear decrease in the 
surface area with time (Epstein & Plesset 1950; Roesler 1951; Liebermann 1957; Berge 
1990). The increased rate of dissolution may be due to gas transport through acoustic 
streaming. A piece of flat glass was placed on the levitator to prevent water 
contamination through airborne particulates. Near theoretical damping was observed 
over the course of the entire experiment. The bubble aspect ratio A remained constant 
near 1.01. The frequency Fwas observed to be about 1 YO above theoretical predictions. 
This discrepancy will be examined in $6. 
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5.2. Case 2. Air bubble in clean water 
A second example performed for a bubble in clean water illustrates a more complicated 
behaviour. These results are shown in figures 5 and 6. This bubble was observed to 
dissolve from a radius of 1400 pm to 430 pm over the course of 66 min. The data for 
which the bubble has a radius of less than 800 pm shows all of the basic features 
discussed for case 1. It is apparent from figure 6 that the damping undergoes an abrupt 
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FIGURE 4. Experimental measurements of the physical and dynamic properties of a single air bubble 
undergoing free decay of quadrupole shape oscillations in clean water (case 1). The quantities 
depicted are: (a) the volume equivalent radius R ;  (b)  the ratio of experimental to theoretical damping 
cosntant S; (c)  the equilibrium aspect ratio A ;  and ( d )  the ratio of the experimental to theoretical 
freouencv F. Theoretical freouencv and damning values were obtained numericallv. 
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FIGURE 6. Damping ratio S for the bubble of figure 5 plotted as a function of bubble radius R. There 
is a clear division at a critical radius, R, z 800 pm, between anomalous large damping (S w 3 )  and 
near theoretical damping ( S  z 1). This transition is characteristic of all bubbles studied in clean 
liquids and is independent of bubble age. 

change at a critical radius, R, % 800 pm. At early times ( t ,  < 15 min) for which 
R > R, the bubble exhibits anomalous large damping values ( S  z 3). This effect is 
observed for all bubbles trapped in clean water and independent of bubble age. Case 1 
is an example of a bubble which spent its entire lifetime with a radius less than this 
critical radius; the anomalous damping is never present. It is not within the scope of FIGURE 5. Experimental measurements of the physical and dynamic properties of a single air bubble 

undergoing free decay of quadrupole shape oscillations in clean water (case 2).  The quantities 
depicted are: (a) the volume equivalent radius R ;  (b) the ratio of experimental to theoretical damping 
constant S ;  (c) the equilibrium aspect ratio A ;  and ( d )  the ratio of the experimental to theoretical 
frequency F. Theoretical frequency and damping values were obtained numerically. Note the 
anomalous large damping for bubbles larger than a critical radius R, % 800 pm. 

FIGURE 5. Experimental measurements of the physical and dynamic properties of a single air bubble 
undergoing free decay of quadrupole shape oscillations in clean water (case 2).  The quantities 
depicted are: (a) the volume equivalent radius R ;  (b) the ratio of experimental to theoretical damping 
constant S ;  (c) the equilibrium aspect ratio A ;  and ( d )  the ratio of the experimental to theoretical 
frequency F. Theoretical frequency and damping values were obtained numerically. Note the 
anomalous large damping for bubbles larger than a critical radius R, % 800 pm. 

FIGURE 5. Experimental measurements of the physical and dynamic properties of a single air bubble 
undergoing free decay of quadrupole shape oscillations in clean water (case 2).  The quantities 
depicted are: (a) the volume equivalent radius R ;  (b) the ratio of experimental to theoretical damping 
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anomalous large damping for bubbles larger than a critical radius R, % 800 pm. 
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FIGURE 7. Experimental measurements of the physical and dynamic properties of a single air bubble 
undergoing free decay of quadrupole shape oscillations in clean 0.5 M NaCl solution (case 3). The 
quantities depicted are: (a) the volume equivalent radius R; (b)  the ratio of experimental to theoretical 
damping constant S; (c) the equilibrium aspect ratio A ;  and ( d )  the ratio of the experimental to 
theoretical frequency F. Theoretical frequency and damping values were obtained numerically. The 
results are qualitatively similar to those of air bubbles in clean water. 

this work to present a detailed study of this phenomena. However, it is important 
that its characteristics are recognized so that any anomalous damping can be avoided 
in experiments intended to probe the interfacial damping. The observed features of this 
phenomena (Asaki 1995) include a steady-state response which is nonlinear in E ,  the 
presence of subharmonics in the steady-state frequency spectrum, and a non- 
exponential free decay. While the origin of the excess damping has not been 
determined, it is plausible that coupling of energy between different modes of the 
bubble is related to the cause. 

When the bubble radius drops below R, the damping suddenly drops to near unity. 
The damping S exhibits a slow increase over time. This may be attributable to the 
collection and concentration of impurities on the bubble surface. In this example, and 
in the subsequent examples, no protective glass was placed on the levitator to inhibit 
possible airborne contamination. The frequency also exhibits initial values near unity 
and a subsequent slow increase over time. The general behaviour of the damping and 
frequency at later times is suggestive of the importance of surface elasticity at 
surfactant concentrations far below those which would significantly affect the static 
surface tension (Lu & Apfel 1990; Barter 1994). The measured surface tensions of 
samples of the water before and after the experiment were 72.3 dyn cm-l. 

FIGURE 5. Experimental measurements of the physical and dynamic properties of a single air bubble 
undergoing free decay of quadrupole shape oscillations in clean water (case 2).  The quantities 
depicted are: (a) the volume equivalent radius R ;  (b) the ratio of experimental to theoretical damping 
constant S ;  (c) the equilibrium aspect ratio A ;  and ( d )  the ratio of the experimental to theoretical 
frequency F. Theoretical frequency and damping values were obtained numerically. Note the 
anomalous large damping for bubbles larger than a critical radius R, % 800 pm. 
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Cases 1 and 2 Case 3 Case 4 
clean water NaCl solution sea water 

T (“C) 23.1 23.5 21.4 

Pi (mg cm-3) 1.082 1.081 1.089 
Po (mg cm-7 997.5 1018 1024 
pi (mg s-l cm-’) 0.184 0.184 0.184 

TABLE 3. Temperature and fluid property values used in the numerical evaluation of (2) for the 
experiments described in $3. Clean-water values were interpolated from Weast (1985). Salt solution 
and sea-water values were interpolated from Weast (1 985) and Horne (1 969). The surface tension for 
sea water is taken to be that of 0.5 M NaCl. 

u (dyn cm-’) 72.3 73.2 73.5 

p, (mg s-’ cm-’) 9.304 9.674 10.51 
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5.3. Case 3. Air bubble in clean salt water 
A third experiment was conducted for a bubble in 0.5 M NaCl solution. This 
concentration is similar to that of sea water (Horne 1969). The results are shown in 
figure 7. The bubble was observed for 23 min. The results are qualitatively similar to 
those of the clean-water cases for R < R,. The radius decreases linearly with time and 
the aspect ratio remains constant near a value of 1.01. The free decay closely matches 
the theoretical predictions for the salt solution used. r l b U K C  0 .  CAPCll l l lCI lLi i l  I l lCi lbUICl l lCl l lb  UI L l l t :  Pl lYblCii l  a l l U  U y l l i i I l l l L  PlUPCl LlCb U1 ii b l l l g l C  all UUUUIC 

undergoing free decay of quadrupole shape oscillations in sea water (case 4). The quantities depicted 
are: (a)  the volume equivalent radius R; (b) the ratio of experimental to theoretical damping constant 
S;  (c) the equilibrium aspect ratio A ;  and ( d )  the ratio of the experimental to theoretical frequency 
F. Theoretical frequency and damping values were obtained numerically. The results for the 
frequency and damping are fundamentally different to those observed for clean fluids. 
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5.4. Case 4 .  Air bubble in sea water 
A final experiment was performed on an air bubble in sea water. The water sample was 
obtained from the Colvos Passage of Puget Sound west of Seattle, Washington in 
March 1994. The water was degassed at about 0.5 atm. for 20 min, but was otherwise 
untreated and unfiltered before bubble injection. The results are shown in figure 8. The 
bubble radius decreases linearly in time and the aspect ratio remains constant near 
1.02. The free-decay frequency and damping exhibit more complicated behaviours 
than were seen for the cases involving clean fluids. The damping rises to a value near 
11 within 5 min and then slowly decreases over 80 min to a value approaching 3. The 
frequency F shows an initial rise to a value of 1.1 corresponding to the region of 
maximum damping. At later times, the frequency decreases and continues to do so for 
the remainder of the experiment eventually reaching a value near 0.7. The significantly 
large damping present during the entire bubble lifetime and the complicated behaviour 
of the frequency suggest the presence of surfactants which create non-ideal interfacial 
conditions. 

6. Conclusion and discussion 
The asymptotic expansion for the free decay of shape oscillations of a liquid sphere 

in an immiscible fluid has been extended. New terms have been shown to be important 
for describing systems of dissimilar densities and viscosities. Comparisons have been 
made with numerical calculations. The measured free decay of quadrupole oscillations 
of an air bubble acoustically trapped in clean water also supports the analysis. Air 
bubbles in clean water and in salt water exhibit near theoretical frequencies and 
damping constants; the interface behaves ideally. Work was also presented for the case 
of an air bubble in sea water which exhibited complicated frequency and damping 
behaviour indicative of the accumulation of surfactants at the bubble surface. 

It is noteworthy that, because of the small size of the bubbles studied, the acoustic 
field required to trap them did not need to be as large in amplitude as for some of the 
previous studies (Asaki et al. 1993; Asaki & Marston 1994). Large bubbles trapped in 
large-amplitude standing waves can manifest a standing capillary wave roughening of 
the surface closer to the pressure antinode in the absence of modulation (see Asaki & 
Marston (1994) and references cited therein). This complexity was avoided in the 
experiments described here. 

For bubbles in purified water or NaCl solution smaller than the critical size R,, the 
observed-to-calculated frequency ratio F deviates from unity by typically 1 %, and is 
similar to the deviation of the aspect ratio A from unity (see figures 4, 5 and 7). This 
discrepancy may be due to a failure of effective radius procedure, equation (14), to fully 
account for the acoustic field. For example, the assumed superposition of static and 
dynamic responses does not include any modification by the acoustic field of the 
restoring force associated with the quadrupole mode. Previously reported observations 
of the approximate frequency of maximum response obtained on the Earth (Asaki et 
al. 1993) were for much larger bubbles for which the aspect ratio A is significantly 
larger. The resulting deviations from predicted frequencies were more significant. It is 
noteworthy that when a similar experiment was performed with large bubbles on the 
Space Shuttle on USML-1 in 1992, each bubble was nearly spherical because the 
radiation pressure needed to trap the bubble was insignificant (Marston et al. 1994). 
For the two large bubbles for which the frequency was measured, the agreement with 
theory was much better than for similar large bubbles on the Earth (Asaki et al. 1993). 
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The observation of this paper that weak static deformation is needed for improved 
agreement with theory is consistent with the results from USML-1. 

This work was supported by the United States Office of Naval Research. 

Appendix A. Complex free decay frequency expansion 
The characteristic determinant, equation (2), can be reduced by considering the 

asymptotic expansions for complex Bessel and Hankel functions, ratios of large 
argument which appear in the boundary conditions. These expansions are : 

n + l  n ( n + l )  n(n+1) .(n-2)n(n+2)(n+3) + . . . (Re (zi) < 0), (A 3) 8zf 2{ M -i+- +i- +- + 1  zi 22; 22; 

where hF)(z,) and jn(zi) are the spherical Hankel function of the first kind and the 
spherical Bessel function, respectively, both of order n. The complex z,(z,) is seen in ( 5 )  
to be proportional to the ratio of the radius to the inner (outer) thickness of the 
oscillating boundary layer. The simplified characteristic, equation (6), is obtained by 
substitution of equations (A 1)-(A 3) into equation (2) and retention of the highest- 
order 52 terms. 

The parameters a, y and K are given by 

(2n + 1)2ao a, 

(2n + 1) ( M ,  a; + M ,  U f )  

a =  
.\/2RT(a, + ai)’ 

R2T(a, + ai), ’ Y =  

(A 6 )  
2% a,(M, a, - M ,  at), - (a, + U i )  (M3 a: + M4 a;) 

K =  2.\/2rR3a, ai(uo + a,), 

The following notation has been used 

a, = (pop,)1/2, ai = ( p i / L i ) 1 / 2 ,  

M ,  = 2n(n+2)po-(n- 1)pui, 
M ,  = (n+2)po+2(n- l)(n+ l)pUi, 

M ,  = (2n+ 1)2 (n+  l)(n+2)pf, 
M4=(2n+1)2n(n-1)p;. 

The expressions for CI. and y are the same as those first calculated by Miller & Scriven 
(1968). When the two fluids are dissimilar, K is a positive quantity. However, for fluids 
of similar densities and viscosities K can be negative. The next term in the characteristic 
equation S has not be explicitly calculated. 

Radiative and thermal losses associated with the monopole oscillations of bubbles 
in water has been considered by Devin (1959). Marston (1980) has estimated that for 
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shape oscillations radiative losses (based upon the work of Strasberg 1956) are 
negligible in comparison to viscous contributions. The effect of any temperature 
gradients associated with shape oscillations should be weak and have been neglected 
in the analysis. 

Appendix B. Frequency of maximum response 

numerically (or approximated) by 
The frequency of maximum response for driven oscillations wmax can be calculated 

where D is the determinant in equation (2) and C is the minor of D given by: 
C = (zi 2:) [ -po zi + 2(2n + l )po  - 2po z ,  23 - (2n + 1 -z ,  2:) (-pi z i  + 2pi zi 9:). 

Leading-order terms have been calculated by Marston & Goosby (1985). Inclusion of 
the leading-order K term gives the expression 

(B 2) 

Comparison of this expression with numerical results is provided in table 1 for the case 
of an air bubble in water. Calculations based on (B 3) compare favourably with 
numerical solutions of (B 1). Note also that the frequency of maximum response is very 
nearly equal to the free-decay frequency. 
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